Training and Competence Assessment; Approved Guideline—Second Edition

This document provides background information and recommended processes for the development of training and competence assessment programs that meet quality/regulatory objectives.

A guideline for global application developed through the NCCLS consensus process.
NCCLS... Serving the World’s Medical Science Community Through Voluntary Consensus

NCCLS is an international, interdisciplinary, nonprofit, standards-developing, and educational organization that promotes the development and use of voluntary consensus standards and guidelines within the healthcare community. It is recognized worldwide for the application of its unique consensus process in the development of standards and guidelines for patient testing and related healthcare issues. NCCLS is based on the principle that consensus is an effective and cost-effective way to improve patient testing and healthcare services.

In addition to developing and promoting the use of voluntary consensus standards and guidelines, NCCLS provides an open and unbiased forum to address critical issues affecting the quality of patient testing and health care.

PUBLICATIONS
An NCCLS document is published as a standard, guideline, or committee report.

Standard A document developed through the consensus process that clearly identifies specific, essential requirements for materials, methods, or practices for use in an unmodified form. A standard may, in addition, contain discretionary elements, which are clearly identified.

Guideline A document developed through the consensus process describing criteria for a general operating practice, procedure, or material for voluntary use. A guideline may be used as written or modified by the user to fit specific needs.

Report A document that has not been subjected to consensus review and is released by the Board of Directors.

CONSENSUS PROCESS
The NCCLS voluntary consensus process is a protocol establishing formal criteria for:

- the authorization of a project
- the development and open review of documents
- the revision of documents in response to comments by users
- the acceptance of a document as a consensus standard or guideline.

Most NCCLS documents are subject to two levels of consensus—“proposed” and “approved.” Depending on the need for field evaluation or data collection, documents may also be made available for review at an intermediate (i.e., “tentative”) consensus level.

Proposed An NCCLS consensus document undergoes the first stage of review by the healthcare community as a proposed standard or guideline. The document should receive a wide and thorough technical review, including an overall review of its scope, approach, and utility, and a line-by-line review of its technical and editorial content.

Tentative A tentative standard or guideline is made available for review and comment only when a recommended method has a well-defined need for a field evaluation or when a recommended protocol requires that specific data be collected. It should be reviewed to ensure its utility.

Approved An approved standard or guideline has achieved consensus within the healthcare community. It should be reviewed to assess the utility of the final document, to ensure attainment of consensus (i.e., that comments on earlier versions have been satisfactorily addressed), and to identify the need for additional consensus documents.

NCCLS standards and guidelines represent a consensus opinion on good practices and reflect the substantial agreement by materially affected, competent, and interested parties obtained by following NCCLS’s established consensus procedures. Provisions in NCCLS standards and guidelines may be more or less stringent than applicable regulations. Consequently, conformance to this voluntary consensus document does not relieve the user of responsibility for compliance with applicable regulations.

COMMENTS
The comments of users are essential to the consensus process. Anyone may submit a comment, and all comments are addressed, according to the consensus process, by the NCCLS committee that wrote the document. All comments, including those that result in a change to the document when published at the next consensus level and those that do not result in a change, are responded to by the committee in an appendix to the document. Readers are strongly encouraged to comment in any form and at any time on any NCCLS document. Address comments to the NCCLS Executive Offices, 940 West Valley Road, Suite 1400, Wayne, PA 19087, USA.

VOLUNTEER PARTICIPATION
Healthcare professionals in all specialties are urged to volunteer for participation in NCCLS projects. Please contact the NCCLS Executive Offices for additional information on committee participation.
Abstract

NCCLS document GP21-A2, *Training and Competence Assessment; Approved Guideline—Second Edition* provides the necessary background information and processes to permit clinical services to develop training and competence assessment programs that will meet specific quality and regulatory objectives. To be effective, training must be built on a solid foundation of documented operations processes, and procedures with accompanying training documents. This guideline provides a structured approach for using documented processes, related procedures, training guides, and assessment tools for the development of training and competence assessment programs.

This publication is protected by copyright. No part of it may be reproduced, stored in a retrieval system, transmitted, or made available in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission from NCCLS, except as stated below.

NCCLS hereby grants permission to reproduce limited portions of this publication for use in laboratory procedure manuals at a single site, for interlibrary loan, or for use in educational programs provided that multiple copies of such reproduction shall include the following notice, be distributed without charge, and, in no event, contain more than 20% of the document’s text.

Permission to reproduce or otherwise use the text of this document to an extent that exceeds the exemptions granted here or under the Copyright Law must be obtained from NCCLS by written request. To request such permission, address inquiries to the Executive Director, NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.

Copyright ©2004. The National Committee for Clinical Laboratory Standards.

Suggested Citation

Proposed Guideline
November 1994

Approved Guideline
December 1995

Approved Guideline—Second Edition
April 2004

ISBN 1-56238-531-3
ISSN 0273-3099
Committee Membership

Area Committee on General Laboratory Practices

Sheila M. Woodcock, A.R.T., M.B.A.
Chairholder
QSE Consulting
Rose Bay, NS, Canada

Eric Arendash, M.T.(ASCP)
Dept. of Health and Human Services
Philadelphia, Pennsylvania

Miguel Azar, M.D.
Department of Veterans Affairs
Medical Center
Minneapolis, Minnesota

Lucia M. Berte, M.A., M.T.(ASCP)SBB, DLM; CQA(ASQ)CQMgr.
Quality Systems Consultant
Westminster, Colorado

Albert Rabinovitch, M.D., Ph.D.
Abbott Laboratories
Hematology Business Unit
Santa Clara, California

Theresa D. Stokeld, M.B.A., M.T.(ASCP)DLM
Remel, Inc.
Lake Charles, Louisiana

Advisors

Kay M. Creed
Health Partners Laboratories
Richmond, Virginia

Donald A. Dynek, M.D.
Lincoln, Nebraska

Steven I. Gutman, M.D., M.B.A.
FDA Ctr. For Devices/Rad. Health
Rockville, Maryland

Gerald A. Hoeltge, M.D.
The Cleveland Clinic Foundation
Cleveland, Ohio

Robert E. Moore, Ph.D., DABCC
Hartford Hospital
Hartford, Connecticut

Stephen J. Sarewitz, M.D.
Valley Medical Center
Renton, Washington

Jennifer Schiffgens, M.B.A., M.T.(ASCP)
California Pacific Medical Center
San Francisco, California

Daniel W. Tholen, M.S.
Dan Tholen Statistical Consulting
Traverse City, Michigan

Marla Thomas
Litton Pathology Associates
Blue Springs, Missouri

Eleanor M. Travers, M.D.
Department of Veterans Affairs
Annapolis, Maryland

Staff

Tracy A. Dooley, M.L.T.(ASCP)
Staff Liaison
NCCLS
Wayne, Pennsylvania

Jennifer K. McGearry, M.T.(ASCP), M.S.H.A.
Project Manager
NCCLS
Wayne, Pennsylvania

Donna M. Wilhelm
Editor
NCCLS
Wayne, Pennsylvania

Melissa A. Lewis
Assistant Editor
NCCLS
Wayne, Pennsylvania

Acknowledgement

NCCLS and the Area Committee on General Laboratory Practices gratefully acknowledge the experts listed below for their help in preparing the approved-level, second edition of this guideline.

Lucia M. Berte, M.A., M.T.(ASCP)SBB, DLM; CQA(ASQ)CQMgr, Westminster, Colorado
Christine Flaherty, M.H.A., M.T.(ASCP); CPHQ, Sutter Health Sacramento-Sierra Region, Sacramento, California
Jennifer Schiffgens, M.B.A., M.T.(ASCP), Sutter Health California Pacific Medical Center, San Francisco, California
Keith Steinbach, University of Alberta Hospital, Edmonton, Alberta, Canada
Nita Sudderth, M.T.(ASCP), Lab Corp, Oklahoma City, Oklahoma
Contents (Continued)

Appendix A5. Sample Training Checklist for the ABC Analyzer Testing Process 33
Appendix A6. Sample Direct Observation Checklist for the ABC Analyzer Testing Process 34
Appendix A7. Sample Written Assessment for the ABC Analyzer Testing Process 35
Appendix A8. Sample Evaluation of Training for the ABC Analyzer Testing Process 36
Appendix B1. An Example of a Direct Observation Form for Technologists 37
Appendix B2. An Example of a Direct Observation Form for Laboratory Assistants 39
Appendix C1. An Example of a Competence Assessment Form for Quantitative Testing 41
Appendix C2. An Example of a Competence Assessment Form for Qualitative Testing 42
Summary of Comments and Working Group Responses .. 43
Summary of Delegate Comments and Working Group Responses .. 44
The Quality System Approach ... 46
Related NCCLS Publications .. 47
Foreword

Increased examination by regulatory agencies, third-party payers, and the public has brought a renewed interest in quality, productivity, and competition to the delivery of healthcare services. Fundamental to all quality systems is the development of training and competence assessment programs.

All regulatory and accreditation agencies—as well as international standards for quality management systems—require that the organization have in place policies, processes, and procedures for training. In addition, in the U.S., assessment of competence in job tasks is required initially after training and periodically throughout employment. These requirements apply to all persons whose work can affect the quality of the organization’s product or service; where volunteers are used in this regard, the requirements apply to them, as well.

GP21-A2—Training and Competence Assessment; Approved Guideline—Second Edition, will assist in the development of training and competence assessment programs to meet specific quality objectives in support of an organization’s mission statement. Standards for job performance are unique to each organization and are based on the competitive, economic, regulatory, and service environment in which the organization operates.

This guideline can be used by healthcare organizations to ensure that training has taken place and is documented, and that the competence of personnel in their assigned job tasks is assessed initially after training and periodically thereafter. The recommendations contained herein are applicable when training new employees, introducing new processes or methods, assessing initial competence, and performing periodic reassessments of competence.

Key Words

Assessment tools, competence assessment, flow charting, procedures, processes, training guides
Training and Competence Assessment; Approved Guideline—Second Edition

1 Scope

This guideline provides healthcare service personnel with a framework for:

- developing training in the processes and procedures that employees perform in their respective jobs; and

- designing assessment tools to verify that personnel are competent after initial training and periodically throughout employment.

Figure 1 shows the sequence of events needed in developing successful training and competence assessment programs.

![Figure 1. Sequence of Events for Developing Successful Training and Competence Assessment Programs](image)

2 Introduction

All good quality systems rely on effective training to ensure that employee performance results in consistent, predictable, and high-quality outcomes in the delivery of health services. In the present regulatory and quality environment, all training must be documented. Additionally, assessment of competence should be periodically determined to verify that performance of assigned job tasks remains consistent.

Some level of medical error has been attributed to either training not being provided or training not being effective. Therefore, consistent, predictable, and high-quality outcomes in the delivery of healthcare services can be provided only if healthcare personnel have been appropriately trained.

Planned and systematic training and competence assessment processes are necessary to verify and document that personnel have, and can demonstrate, the necessary knowledge, skills, and behaviors to perform their respective duties. By defining the service’s path of workflow, identifying work processes

An NCCLS global consensus guideline. ©NCCLS. All rights reserved.
and procedures, and training employees in the processes and procedures of their jobs, the organization makes an important contribution to ensuring the quality of the services it provides.

3 Definitions

Competence – Application of knowledge, skills, and behaviors in performance (ISO 10015, 3.1).¹

Procedure – A specified way to carry out an activity of a process (ISO 9000, 3.4.5).²

Process – Set of interrelated or interacting activities that transform inputs into outputs (ISO 9000, 3.4.1).²

Training – Process to provide and develop knowledge, skills, and behaviors to meet requirements (ISO 10015, 3.2).¹

4 Quality System Approach

The quality system approach applies a core set of “quality system essentials” (QSEs) that are basic to any organization and to all operations in any healthcare service’s path of workflow. The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The quality system essentials (QSEs) are: Organization; Personnel; Equipment; Purchasing and Inventory; Process Control; Documents & Records; Information Management; Occurrence Management; Assessment; Process Improvement; Service and Satisfaction; and Facilities and Safety.

More information about the QSEs can be found in the most current version of NCCLS document HS1—A Quality System Model for Health Care.

The key elements of QSEs: Personnel and the elements covered in this guideline are shown in Figure 2.

![Figure 2. Key Elements of QSEs: Personnel](image_url)

5 Education, Training, and Competence—The Differences

5.1 Education Versus Training

For the purposes of this guideline, a distinction must be made between the *education* one receives in undergraduate schooling for the purposes of gaining knowledge, and being trained in a set of skills for the
purpose of being able to put the knowledge to practical use. The main difference is that of learning the material to demonstrate one’s knowledge versus learning how to do something and demonstrating the ability to perform the skill. Table 1 compares education and training.

<table>
<thead>
<tr>
<th>Education</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus is on future job for the learner</td>
<td>Focus is on present job of the learner</td>
</tr>
<tr>
<td>Awareness of a skill</td>
<td>Demonstration of a skill</td>
</tr>
<tr>
<td>Assessment through tests of knowledge</td>
<td>Assessment through performance</td>
</tr>
</tbody>
</table>

Table 1. The Differences Between Education and Training

5.2 Professional Training

Professional training is training received in the knowledge and skills of a particular profession and is based on a defined body of knowledge and set of skills that prepares the learner for a future job in that profession. In professional training, the student is allowed to develop and practice skills in a setting similar to the actual work environment. Examples include clinical service internships, rotations, and clerkships. The information in this guideline may be used to develop individual training experiences in a professional training program.

5.3 Employment Training

Employment training is that training provided for employees who are new to the organization or are new to a different job in the organization. Clinical service professionals with years of experience will still need to be trained in the policies, processes, and procedures of their new work environment after they change employers or jobs. While the theory learned and basic skill set obtained by a given professional do not significantly change, a new employer’s work processes, instrumentation, forms, and computer systems are likely to differ from those used in previous employment. Thus, a new employee with previous experience and an entry-level employee who are hired for the same job would be trained in the same work processes and procedures. To make an effective contribution to the workforce, new employees—whatever their experience levels—need to be trained in “how it happens here.” Employment training is assessed by demonstration of competence in work processes and procedures. Table 2 summarizes the differences between professional training and employment training.

<table>
<thead>
<tr>
<th>Professional Training</th>
<th>Employment Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted as part of study combined with academic material</td>
<td>Conducted as part of responsibilities and requirements for the job</td>
</tr>
</tbody>
</table>

Table 2. Professional Training Versus Employment Training

5.4 Required Training Programs

Employment training covers more than job tasks alone. Regulations and accreditation requirements for employment training programs in healthcare services all require that employees have training in addition to job tasks. Table 3 presents components of a complete clinical service training program.
Table 3. Components of a Complete Clinical Service Training Program

<table>
<thead>
<tr>
<th>Type of Employment Training</th>
<th>Contents</th>
</tr>
</thead>
</table>
| Quality | • Organization’s quality system
 • Quality manual
 • Service’s path of workflow
 • Quality Control Program
 • Quality Assurance program
 • Occurrence Management program
 • Customer Service Program
 • Quality System responsibilities
 • [Good Manufacturing Practice (GMP): blood banking only]
 • [Proficiency testing: screening and diagnostic laboratory testing only] |
| Computer | • Main organization’s system (e.g., hospital information system (HIS))
 • Department’s system (e.g., laboratory information system (LIS))
 • PC applications (e.g., e-mail, scheduling, word processing, spreadsheets, database)
 • Intranet
 • Online documents
 • Other computer applications used in the job (e.g., documentation of training, continuing education, competence assessment, etc.) |
| Safety | • Accident reporting
 • Emergency preparedness
 • Hazardous waste disposal
 • Chemical hygiene program
 • Infection control (universal precautions, bioterrorism, etc.)
 • Radiation safety, where needed |
| Work processes and procedures | • Processes in the path of workflow in which the employee works
 • Procedures performed |
| Compliance [U.S. only] | • Medical necessity requirements
 • Fraud and abuse reporting
 • Health Insurance Portability and Accountability Act (HIPAA) |

5.5 When to Train

Regulatory and accreditation requirements specify that training should be conducted at the following times:

- for new employees, to learn their respective work processes and procedures;
- for all employees, when organizational or technological changes affect work processes; and
- when training needs are identified (e.g., repeated problems, or unsuccessful performance on a competence assessment exercise).

This guideline describes how to design training guides for work processes and procedures for new employees or for when all employees need to be trained in new or changed processes and procedures.
5.6 Competence Assessment

Following initial employment training, the new employee’s competence is assessed to determine the effectiveness of training as well as the person’s readiness to function in his or her actual work environment. Competence assessment of new employees should be administered during, and at the end of, employment training and periodically thereafter to verify the person’s continued demonstration of necessary knowledge, skills, and correct practice of work processes and procedures.

Competence assessment should also be performed when all staff members are introduced to new or changed work processes or procedures. When new tests are involved, competence needs to be assessed before reporting test results. This is necessary to ensure readiness for effective delivery of those processes and procedures in the actual work environment.

This guideline describes how to use work processes to develop initial and ongoing competence assessment.

5.7 Comparison of Knowledge Versus Competence

A distillation of the concepts discussed in Section 5 is presented in Table 4.

<table>
<thead>
<tr>
<th>Table 4. Knowledge Versus Competence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
</tr>
<tr>
<td>Training</td>
</tr>
<tr>
<td>Practice</td>
</tr>
<tr>
<td>Experience</td>
</tr>
</tbody>
</table>

6 Training—A Four-Stage Process

This guideline focuses specifically on how to implement an employment training program. The suggestions and examples provide guidance for developing training for employees both new to the organization and those faced with changes to current work processes and procedures.

A simple four-stage process can be distilled from the wealth of published literature on training. Table 5 displays the four stages of the training process with a brief description of each stage.

<table>
<thead>
<tr>
<th>Table 5. The Four Stages of Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>1. Training needs identified</td>
</tr>
<tr>
<td>2. Training guides developed</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3. Training is implemented</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4. Training outcomes evaluated</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
6.1 Training Needs Identified

Identification of training needs entails more than a checklist of procedures an employee will perform in a given job. Each individual brings unique skills and experiences to an organization and therefore, has unique needs for training. New employees with previous experience are likely to have the necessary background knowledge and skills to perform the technical aspects of a given procedure; what they need to learn is how the procedures are sequenced in the new work environment. For example, for an experienced phlebotomist in a new job, training is more than verifying that the phlebotomist can perform blood collection by various techniques. Training must also involve developing an awareness in the new phlebotomist of the sequence of activities involved in the morning specimen collection rounds, such as generating collection lists from the computer, prioritizing the sequence of collection locations, transporting specimens to the laboratory, and verifying the collections. A new respiratory therapist in her first job after professional training needs to learn the process for how orders for therapeutic interventions or protocol initiation are prioritized and scheduled to sequence patient assessments in the workload, as well as how to complete the assessment form. A new blood bank technologist knows how to perform a crossmatch—he needs to be trained in the compatibility testing process in his new job.

Real training does not consist of having a new employee read a procedure and sign off on a checklist. Rarely, if ever, does a healthcare service job consist of a person performing a single procedure in isolation of all the other procedures, and work does not happen in the alphabetical order in which most procedures manuals are organized. Real work is a sequence and linking of several distinct activities in the order needed to achieve the desired outcome—this is known as a work process.

Identifying training needs consists of identifying:

- work processes performed in a given job;
- procedures performed in each work process; and
- policies that apply to work processes and procedures.

Each clinical service should identify its own work processes and supporting procedures. NCCLS document GP26—Application of a Quality System Model for Laboratory Services provides numerous examples of laboratory work processes (depicted as flowcharts) and the respective procedures that are performed in each process. The GP26 guideline can serve as a model for other clinical services that need to identify their respective work processes.

Training needs are documented in a checklist of the work processes and procedures to be performed in a given job.

6.2 Training Guides Developed

A training guide consists of the following elements:

- objectives for the training;
- identification of the methods to be used in training;
- identification of the materials to be used in the training; and
- criteria to assess the effectiveness of training.

Table 6 briefly describes the functions of the components of the training guide.
Table 6. Training Guide Components

<table>
<thead>
<tr>
<th>Training Guide Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>States the expectations for the outcomes of the training event</td>
</tr>
<tr>
<td>Methods</td>
<td>Describes the various means used to conduct the training</td>
</tr>
<tr>
<td>Materials</td>
<td>Lists the materials and resources provided for the training event</td>
</tr>
<tr>
<td>Criteria to assess the effectiveness of training</td>
<td>Describes the tools used to assess the effectiveness of training</td>
</tr>
</tbody>
</table>

Figure 3 provides an example of a form designed to capture information for a given training guide.

Training Guide for [insert title here]

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the conclusion of the training event, the learner will be able to:</td>
<td>Methods used in this training event include those checked below:</td>
</tr>
<tr>
<td>•</td>
<td>❑ Lecture</td>
</tr>
<tr>
<td>•</td>
<td>❑ Practice</td>
</tr>
<tr>
<td>•</td>
<td>❑ Computer-based</td>
</tr>
<tr>
<td>•</td>
<td>❑ Self-assessment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training Materials</th>
<th>Learner Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials used in this training event include those checked below:</td>
<td>Assessment of initial competence after this training event will include those checked below:</td>
</tr>
<tr>
<td>❑ Process flowchart or table</td>
<td>❑ Record review</td>
</tr>
<tr>
<td>❑ Written procedures and job aids</td>
<td>❑ Direct observation</td>
</tr>
<tr>
<td>❑ Operator’s manual</td>
<td>❑ Specially-provided materials</td>
</tr>
<tr>
<td>❑ Package inserts</td>
<td>❑ Written quiz</td>
</tr>
<tr>
<td>❑ Lecture handout</td>
<td>❑ Oral quiz</td>
</tr>
<tr>
<td>❑ Self-study handout</td>
<td></td>
</tr>
<tr>
<td>❑ Computer program handout</td>
<td></td>
</tr>
<tr>
<td>❑ Videotape(s)</td>
<td></td>
</tr>
<tr>
<td>❑ Practice material</td>
<td></td>
</tr>
</tbody>
</table>

Facility Name, Location
[filename and path] Page 1 of 1

Figure 3. Sample Training Guide
6.2.1 Learning Objectives

Learning objectives are expectations for training outcomes that can be observed or assessed; therefore, they use action verbs and describe measurable behaviors (see Table 7). Learning objectives for training are of two types:

- **Cognitive**: assess knowledge (Example: *List* the computer codes used in this process.)
- **Psychomotor**: assess physical skills (Example: *Fill* the cuvette.)

<table>
<thead>
<tr>
<th>Table 7. Sample Learning Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Objective</td>
</tr>
<tr>
<td>At the conclusion of training, the employee will be able to:</td>
</tr>
<tr>
<td>• perform the process and supporting procedures without supervision and within acceptable limits, including:</td>
</tr>
<tr>
<td>– performing linearity checks (psychomotor);</td>
</tr>
<tr>
<td>– calibrating the instrument (psychomotor); and</td>
</tr>
<tr>
<td>– loading the sample trays (psychomotor).</td>
</tr>
<tr>
<td>• achieving a passing score on the written quiz (cognitive).</td>
</tr>
</tbody>
</table>

The learning objectives are documented in the “objectives” section of the training guide form.

6.2.2 Training Methods

Training methods include, but are not limited to, any of the following as applicable to the work process for which training is being conducted:

- lecture;
- use of computer-based exercises;
- self-study;
- observance of demonstrations—live or videotaped;
- practice under supervision;
- self-assessment of practice outcomes; and
- testing or identification of specially-provided samples.

The training methods to be used for a given process are documented in the “methods” section of the training guide form.
6.2.3 Identification of Training Materials

Training materials include all items to be used during delivery of the training event. Training materials are documented in the “materials” section of the training guide form. Table 8 briefly describes the purpose of various types of training materials.

<table>
<thead>
<tr>
<th>Training Materials</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>References (text, articles)</td>
<td>Provides background, theory, principle, and applications</td>
</tr>
<tr>
<td>Operator’s manuals</td>
<td></td>
</tr>
<tr>
<td>Manufacturer’s instructions</td>
<td></td>
</tr>
<tr>
<td>Documented work process (in the procedures manual)</td>
<td>Describes the sequence of the activities for which training will take place</td>
</tr>
<tr>
<td>Documented procedures (in the procedures manual)</td>
<td>Provides detailed instructions for how to perform each activity in the process</td>
</tr>
<tr>
<td>Lecture handouts</td>
<td>Provides notes reflecting key information about the process</td>
</tr>
<tr>
<td>Computer-based programs, Self-study programs, Videotapes</td>
<td>Provides the learners with self-paced introduction to new information</td>
</tr>
<tr>
<td>Practice materials</td>
<td>Provides samples on which to practice new skills</td>
</tr>
<tr>
<td>Specimens (testing); instruments, artificial limbs (manual dexterity skills); requisitions and forms; and information in teaching databases.</td>
<td></td>
</tr>
</tbody>
</table>

6.2.4 Instructions for Trainer and Learner

To prepare appropriately for the training event, both the trainer and the learner should be provided with instructions.

6.2.4.1 Trainer Instructions

Trainers should be given instructions about what they are responsible for in preparing for a successful training event. Practice materials may need to be prepared in advance; a list of materials to be prepared for demonstrations, learner practice, and specially-provided samples helps to ensure uniformity in training. A sample set of instructions for trainers is presented in Figure 4.
Trainer Responsibilities for [insert name of process here]

Objectives

As the trainer, you need to:

- **organize** the training event for success;
- **communicate** clearly;
- **provide** accurate and complete information;
- immediately **correct** performance problems in a respectful manner; and
- **provide** opportunities for feedback.

Training Guide

Familiarize yourself with the contents of the training guide.

Methods and Materials

- **Assemble** the methods and materials for training (see the training guide for the methods and materials to use).

- **Prepare** the following samples for demonstration and practice:

 [List the numbers and types of practice samples here.]

- **Prepare** the following unknowns for the evaluation exercise:

 [List the numbers and types of unknown samples here.]

Learner Evaluation

Use the following tools to evaluate whether the learner has learned the material:

- **Unknowns:** _Provide_ and evaluate unknowns.
- **Written:** _Administer_ and score written evaluation.
- **Oral:** _Administer_ and score questions selected from question list.
- **DOCL:** _Observe_ the learner and document performance on the Direct Observation Checklist (DOCL).

Figure 4. Sample Form for Trainer Responsibilities (This example was contributed by the Provincial Laboratory for Public Health Microbiology, Calgary and Edmonton, Alberta, Canada.)

6.2.4.2 Learner Instructions

Learners should be given instructions to help them understand their responsibilities in the training event. A sample set of instructions for learners is presented in **Figure 5.**
Learner Responsibilities for [insert name of process here]

Objectives

At the conclusion of the training event, you must be able to:

- *explain* the process and describe your role within the process;
- *perform* the procedures in the correct sequence;
- *perform* the procedures as written and without direct supervision; and
- *perform* all required safety precautions.

Training Guide

Familiarize yourself with the contents of the training guide.

Methods and Materials

- *Complete* any pre-required reading (as listed in the Training Guide).
 - processes
 - procedures
 - references
 - package inserts
 - manuals, etc.
- *Observe* any demonstrations.
- *Obtain* practice material.
- *Perform* standard operating procedures on practice material.
- *Do* a self-assessment using the Direct Observation Checklist.

Learner Evaluation

To demonstrate that you have learned the material, you will be required to do one or more of the following:

- Perform unknowns, if applicable.
- Perform the procedure(s) for the trainer who will follow on a Direct Observation Checklist.
- Complete and pass the written quiz.
- Answer any oral questions.
- Obtain the trainer’s sign off on the training checklist.

Figure 5. Sample Form for Learner Responsibilities (This example was contributed by the Provincial Laboratory for Public Health Microbiology, Calgary and Edmonton, Alberta, Canada.)

6.2.5 Completion of the Training Guide Packet

A completed training guide packet should be prepared for each training event. Packets can be prepared in advance and reviewed by the trainer in preparation for a given training event. Training packets are a
means to standardize the contents and delivery of training events. Table 9 describes the contents of the training guide packet.

Table 9. Items to Include in the Training Guide Packet

<table>
<thead>
<tr>
<th>Item</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed training guide form</td>
<td>• Provides a description of training event for the learner</td>
</tr>
<tr>
<td>Instructions for the trainer</td>
<td>• Provides information that allows the trainer to prepare for and conduct the training event</td>
</tr>
<tr>
<td>Instructions for the learner</td>
<td>• Provides information for the learner about how the training event will be conducted</td>
</tr>
<tr>
<td>Training checklist</td>
<td>• Provides a means to check off the processes and procedures for which training took place</td>
</tr>
<tr>
<td>Direct observation checklist</td>
<td>• Used by learner to self-evaluate after practicing the procedures</td>
</tr>
<tr>
<td></td>
<td>• Used by the trainer to assess whether training has been successful</td>
</tr>
<tr>
<td></td>
<td>• Used for periodic ongoing competence assessment to assure skills have been retained</td>
</tr>
<tr>
<td></td>
<td>• Used after remedial training to assure demonstration of required skills</td>
</tr>
<tr>
<td>Written quiz or test</td>
<td>• Questions to assess knowledge of the process or procedure</td>
</tr>
</tbody>
</table>

Appendix A is an example of a completed training guide packet for setting up and operating the ABC Analyzer.

6.3 Training is Implemented

6.3.1 Trainer Qualifications

Trainers need to be qualified to impart the necessary knowledge and skills to others. Trainers themselves should regularly work in the processes and perform the procedures in which they instruct others. The service needs to decide how it will determine which person(s) is (are) qualified to train others.

Necessary attributes of a qualified trainer include:

- interest in training;
- enthusiasm for working with people;
- good verbal skills (providing instructions, answering questions, etc.);
- good listening skills;
- good observational skills;
- patience;
- objectivity;
- respect of and for colleagues;
- previous experience; and
- accurate knowledge of the process and procedures involved in the training event.
6.3.2 Training is Conducted

A training environment conducive to learning should be provided. The learner should have the opportunity to practice in a “safe” environment where:

- he or she is not punished for mistakes;
- there is time for reflection on the information obtained and activity learned;
- the learner can make conclusions from information presented or activities experienced; and
- the learner can adapt to the new learning.\(^3\)

Whenever possible, training should take place in the area where the work is actually performed so that the learner can observe the actual work process and procedures.

Documentation of training is explained in Section 7.

6.3.2.1 Performance Standards

Performance standards are statements of expected results or behaviors that specify the quantity and quality of work necessary to contribute to the work area’s objectives. Performance standards should be communicated to new employees when training is initiated so that they are clear about the results or behaviors expected by their supervisors.

Here is an example of a performance standard stated as an expected result: “Within three months of commencing phlebotomy as a full-time laboratory assistant, you will have fewer than five missed venipunctures per month and an average of 800 phlebotomies per month.”

Here is an example of a performance standard stated as an expected behavior: “You are to answer the telephone within three rings, identifying yourself by name and department.”

New employees should be provided with the performance standards for their jobs and told when they will be held accountable for that level of performance. During initial training, employees will then be aware of the performance standards and can use them as a goal for their training outcomes—however, employees will not immediately be expected to perform at that level.

6.4 Training Outcomes are Evaluated

Evaluation of training programs is conducted at four levels represented by the following questions:

- Did the employee like the training experience?
- Did the employee learn the materials?
- Were the skills learned transferred to the workplace?
- How was the transfer assessed?
6.4.1 Did the Employee Like the Training Experience?

Employees should be given the opportunity to provide feedback on the training experience to determine where there might be opportunities for improvement to the training guides, trainers, and training events. An example of a form for evaluating the training experience is provided in Figure 6.

<table>
<thead>
<tr>
<th>Item</th>
<th>Circle</th>
<th>Comments</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Were you shown how to find the resource materials?</td>
<td>Y</td>
<td></td>
<td>1 = unsatisfactory</td>
</tr>
<tr>
<td>Was the process clearly explained?</td>
<td>Y</td>
<td></td>
<td>2 = satisfactory</td>
</tr>
<tr>
<td>Was (were) the procedure(s) clearly demonstrated?</td>
<td>Y</td>
<td></td>
<td>3 = very good</td>
</tr>
<tr>
<td>Were you shown where to get supplies and equipment?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were you given enough time to practice?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was the trainer approachable?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you feel comfortable asking questions?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the trainer did not know the answer, could he/she find the information?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When you did the procedure(s), were you corrected respectfully?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you get constructive, timely feedback?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you feel comfortable performing the procedure(s) on your own?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were you asked questions to gauge your knowledge and understanding of the process or procedure(s)?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facility Name, Location
[filename and path]

Figure 6. Evaluation of Training Experience (This example was contributed by the Provincial Laboratory for Public Health Microbiology in Calgary and Edmonton, Alberta, Canada.)

6.4.2 Did the Employee Learn the Material and Skills?

Assessment of the employee’s competence after training is a means of determining the ability of the employee to use the newly acquired skills in the workplace.
6.4.2.1 Initial Competence Assessment

Prior to working independently, a new employee’s competence needs to be assessed and this assessment documented. Likewise, when a new process or procedure has been introduced, the competence of all involved employees should be assessed prior to implementation. The assessment should challenge both the cognitive and psychomotor skills needed to perform the process and related procedures and verify that the learning objectives stated in the training guide have been met. Criteria against which employees are assessed need to be predetermined and verified before using an assessment activity to confirm their ability to perform a process or procedure.

6.4.2.2 Cognitive Assessment

Assessments of an employee’s cognitive skills with respect to a particular process or procedure can be determined by oral or written tests, the latter of which can be more readily documented.

Questions can involve any of the following attributes of a given process or procedure:

- theory;
- technique;
- interpretation; and
- problem solving.

6.4.2.2.1 A Theory Question

A theory question assesses the employee’s knowledge of the background information for a given procedure.

Example:

“Describe the principle of the test method for the hand-held XYZ Blood Glucose instrument.”

6.4.2.2.2 A Technique Question

A technique question assesses the employee’s knowledge of an important step or action in a given procedure.

Example:

“Explain the significance of proper positioning when a mammography image is taken.”

6.4.2.2.3 An Interpretation Question

An interpretation question assesses the employee’s ability to arrive at the correct conclusion for a given set of results.

Example:

“Interpret the meaning of the following blood gas results on a patient diagnosed with pneumonia.”

a In the U.S., refer to the Clinical Laboratory Improvement Amendments [codified at 42 CFR §493.1451 (b)(8)] (1988).
6.4.2.2.4 A Problem-Solving Question

A problem-solving question assesses the employee’s ability to take the correct action in a problem situation he or she is likely to encounter. Examples include resolving a posed and procedure-relevant situation, solving given and procedure-relevant calculations, or recommendation of an appropriate procedure-relevant course of action that is consistent with the service’s policy.

Example:

“After issuing a medication to the nursing station, you discover that the dose on the label is wrong. Describe how you would follow-up this situation.”

Figure 7 provides an example of a form to prepare a written test.

<table>
<thead>
<tr>
<th>Written Assessment Form</th>
<th>Effective Date: mm/dd/yy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number:</td>
<td></td>
</tr>
</tbody>
</table>

Written Assessment for [insert name of process or procedure here]

<table>
<thead>
<tr>
<th>Employee:</th>
<th>Date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Theory Question(s):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Technique Question(s):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interpretation Question(s):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Problem Solving Question(s):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number correct:</th>
<th>Number incorrect:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up issues identified:</td>
<td>Yes</td>
</tr>
<tr>
<td>Actions taken:</td>
<td></td>
</tr>
<tr>
<td>Reviewed by:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

Figure 7. Sample Written Assessment Form (This example was adapted from Transfusion Service Manual of Standard Operating Procedures, Training Guides, and Competence Assessment Tools. Bethesda, MD: American Association of Blood Banks; 1996 (no longer available)).
6.4.2.3 Psychomotor Assessment

The need for patient safety and the judicious use of scarce resources in today’s healthcare environment do not allow for incompetent practice of work processes and procedures; therefore, employees need to perform work correctly the first time. The best assurance a service can have that employees understand and can perform their assigned work tasks is to have them demonstrate performance under observation.

Training guide packets should include one or more “Direct Observation Checklists” that cover the work process and procedures for which training was delivered.

6.4.2.3.1 Direct Observation Checklist

The direct observation checklist can be used first by the employee to self-assess progress during practice sessions of the activities in a process or steps in a procedure. Then the observer uses the direct observation checklist to follow along and document the employee’s performance of the process or procedure. If performance is not satisfactory, the employee should be given more time to practice before reassessment. Observers should be cognizant that performers may be overly conscientious or demonstrate nervousness when being watched. At the conclusion of the observation, the observer records whether the employee met the requirements, whether or not review or additional training is needed, and any applicable comments.

A direct observation checklist provides an objective means for assessing performance. An example is shown in Figure 8.
Direct Observation Checklist

Employee: Observed by:

Did the employee:

1. [Write the question that directly relates to a critical activity in a process or step in a procedure. Write the action verb first.]

 Example: Verify the patient's name by checking the wristband? □ Yes □ No

2. [Write the questions in the order that the activities are sequenced in the process, or the steps are sequenced in a procedure.]

 Example: Compare the wristband to the printed label or requisition? □ Yes □ No

3. Continue writing each question, action verb first.

4. Where applicable, use this as the last question:

 Follow all required safety precautions? □ Yes □ No

Number of times observed:

Competent to perform the procedure: □ Yes □ No

Signatures

Trainer: Employee:

Date: Remedial action taken:

Remedial action completed:

Date: Trainer:

Figure 8. Sample Direct Observation Checklist (This example was adapted from Transfusion Service Manual of Standard Operating Procedures, Training Guides, and Competence Assessment Tools. Bethesda, MD: American Association of Blood Banks; 1996 (no longer available)).

6.4.3 Were the Skills Transferred to the Workplace?

Regulations and accreditation requirements mandate periodic review of the staff’s ability to meet the performance expectations stated in their job descriptions, training guides, and performance standards.4
The ongoing assessment of competence is not to be confused with an organization’s periodic performance appraisal process usually conducted in conjunction with the organization’s human resources department. However, competence assessment outcomes should be included in the organization’s performance appraisal.

Management must also take and document actions when individual performance is not up to that needed to ensure patient safety and service performance. Such actions should include preventing the employee from performing procedures for which he or she has failed to demonstrate competence.

6.4.3.1 Ongoing Competence Assessment

Several means are available to determine and document ongoing competence of individual staff members. They include:

- direct observation of routine work processes and procedures;
- direct observation of equipment maintenance and function checks;
- monitoring the recording and reporting of results;
- reviewing work records (e.g., completed worksheets, forms);
- assessment of problem-solving skills; and
- performance of a given procedure using specially provided materials.

6.4.3.2 Direct Observations

Following the guidance provided in Section 6.4.2.3, direct observation checklists can be developed for routine work processes and procedures, and equipment maintenance and function checks. The objective is to determine whether employees are following documented processes and procedures. Over time, staff members tend to drift away from procedure specifics as they discover shortcuts and workarounds. Such invalidated activities may be leading to problematic patient safety issues—both discovered and undiscovered.

Appendices B1 and B2 provide examples of direct observation checklists for laboratory technologists and laboratory assistants.

6.4.3.3 Monitoring Results, Reports, and Records

A supervisor’s routine review of reports and records can reveal mistakes and issues that could be related to lack of competence. Such mistakes and issues should be investigated to determine their causes. Actions appropriate to removing the cause should be taken and documented.

6.4.3.4 Problem-Solving Skills

Healthcare services functioning in a quality system environment will have an ongoing means to capture information about events that do not conform to the organization’s stated policies, processes, or procedures (also known as “occurrences”) and review them in a timely manner. The information contained in occurrence reports can be used to determine a person’s problem-solving capabilities by

\[b\] In the U.S., refer to the Clinical Laboratory Improvement Amendments [codified at 42 CFR §493.1451 (b)(8)] (1988).
reviewing the appropriateness of the remedial actions taken and the follow-up investigations made. By no means should occurrence reports be the sole means to determine competence. It is important that occurrences be reported in a “no-fault” environment to identify where opportunities to improve work processes and procedures exist.

Other situations in which problem-solving skills can be assessed include: resolving equipment and other technical or testing problems, handling of emergent situations, meeting a specific customer’s needs, and knowing when to escalate a problem that cannot be solved at that person’s level.

6.4.3.5 Performing a Procedure Using Specially Provided Materials

Although it takes considerable effort within the clinical service, provision of specific materials (“unknowns”) is a useful means to determine if personnel are competently performing their assigned work processes and procedures. This method is especially useful in healthcare services where diagnostic testing is performed (e.g., clinical laboratory, pulmonary diagnostic testing) because source materials for testing are readily available.

Source materials include testing of the following:

- blind specimens;
- previously analyzed specimens; and
- known specimens.

6.4.3.5.1 Blind Test Specimens

Employees are unaware when blind test specimens are entered into the work stream because they appear identical to other specimens, are in routinely used containers, are from a similar source, and have labels with patient identification numbers, physician identification, hospital coding, etc. The intent is to provide material that is simulated to actual specimens to assess realistic process conditions. More often, due to logistical dilemmas such as preparation, identification, and high cost, these specimens are used for specific studies rather than general monitoring of laboratory performance. The advantages of blind specimens include more reliable assessment of routine performance and the identification of problems within all phases of the path of workflow. The system of testing blind specimens is considered to be the best and most thorough representation of diagnostic testing performance, but feasibility is a major factor preventing widespread use. For example, the type of instrumentation may limit blind testing because some instruments will automatically report the normal results of a patient specimen.

6.4.3.5.2 Previously Analyzed Material

Replicate testing of previously analyzed material provides accessible internal comparisons. Assessment of performance can be determined only for the analytic phase; assessment for the pre- and postanalytic phases is not usually possible. Costs can be significantly reduced because the specimens are obtained from on-site sources such as previously tested patient specimens (regardless of time, if the specimen is preserved properly and the analyte is stable); specimens from persons with known constituents or abnormalities; and already reported proficiency-testing specimens.

Appendices C1 and C2 provide examples of forms that can be used to evaluate testing performance on a set of specially provided quantitative and qualitative samples.
6.4.3.6 When Performance is Unacceptable

Much has been written about retraining of personnel when they have failed to meet competence assessment challenges. However, the vast amount of quality management literature makes it clear that over 85% of problems are found within the work processes and procedures that management have designed—or not designed—by default. Therefore, retraining apparently “incompetent” employees in malfunctioning, absent, or highly variable work processes will not solve their performance problems.

Before deeming an employee as needing to be retrained, managers should answer the following questions:

- Have all work processes been clearly documented?
- Are there written procedures for all activities in the work process?
- Are the written procedures clear and easy to understand?
- Does the service have a documented training program for all work processes and procedures?
- Has the employee been trained in the process or procedure in question and was the training documented?
- How was the effectiveness of the employee’s training determined?
- Is the employee the only person with this performance problem?

When there is clear evidence that the employee is not competent to perform the assigned tasks, management must take and document follow-up actions. The criteria for reassessment should be established, documented, and communicated to employees prior to the periodic reassessment events. Criteria need to include guidance on how many chances an individual should get to pass assessment, re-administering the same or a different test, and consideration for those who do not perform well on written assessment but whose performance in visual and practical assessment is acceptable.

Figure 9 provides an example of a form for follow-up of competence or learning assessments that require remediation.
Figure 9. Sample Form for Follow-up of Competence or Learning Assessment Requiring Remediation (This example was contributed by Sutter Health Sacramento Sierra Region Laboratory Services, Sacramento, California.)

6.4.4 How Was the Transfer Assessed?

Healthcare services functioning in a quality system environment will have an ongoing means to determine if work processes and procedures are functioning as needed to achieve the service’s quality goals and objectives.

The effectiveness of training, as determined by acceptable process performance, can be inferred through any of the following means:

- quality indicators;
- quality audits;
• trends and patterns of occurrence; and

• customer feedback.

7 Documentation of Training and Competence Assessment

Documentation of employment training and competence assessment is required by all regulatory and accreditation programs. The service must provide an effective means of documenting and tracking an employee’s training and competence assessment records across time. Historically, manual records have been maintained in employee files. Electronic tracking is now becoming a useful tool.

7.1 Records To Be Kept

7.1.1 Training Records

At the conclusion of each training event, the following records should be completed and retained in the employee’s training file:

• checklist(s) of processes and procedures;

• written test(s); and

• direct observation checklist(s) completed by the observer.

NOTE: The paper copies contain the signatures of the trainer and the employee.

There may also be a “group” training record; that is, in the instance that all employees are to sign after reading a particular document or observing a particular video.

7.1.2 Competence Assessment Records

At the conclusion of each competence assessment event, the following records should be completed and retained in the employee’s file:

• direct observation checklist(s) completed by the observer; or

• any written assessment (case study, test, other).

NOTE: The paper copies contain the signatures of the observer/supervisor and the employee.

Spreadsheet and database programs can also be set up to track the events and dates of training and competence assessments across time, thus providing a readily available record that shows a given employee’s entire training and competence assessment history.

NOTE: There can be no “group” competence assessment record; competence is demonstration of a skill, not acknowledgment of receiving knowledge.

7.2 Documentation Systems

Documentation systems should be selected based on:

• ease of use;
• efficiency;
• cost to implement;
• ability to meet regulatory, accreditation, and facility requirements; and
• applicability to the service.

Several commercial electronic documentation systems are available for tracking of training and competence assessment events. The databases can usually be queried to provide reports such as which employees are next due for ongoing assessment, all the employees documented as trained and competent in a particular process or procedure, or an individual’s complete record across time.

7.3 Review of Records

A periodic review of training and competence assessment records by the service’s management personnel will reveal useful information about the service’s work practices. The records will demonstrate unsuccessful assessments, any remediation training, repeated errors and problems, and common questions that may point to a need for changes in the process or procedure.

Review of training and competence assessment records also verifies that the goals of the training and competence assessment programs were achieved:

• to provide instruction in the service’s processes and procedures;
• to provide performance feedback;
• to introduce new processes and procedures;
• to provide information for performance evaluations; and
• to comply with regulatory and accreditation requirements.

7.4 Retention of Records

Records of training and competence assessments should be kept according to the service’s predetermined record-retention schedule that is based on regulatory, accreditation, facility, and any other legal requirements.

The record-retention process should clearly indicate:

• who is responsible for storing the record;
• where records are kept;
• who has access; and
• when records can be discarded.

7.4.1 Who is Responsible?

The responsibility for generating and storing records is shared by the employee, the supervisor, healthcare service management, and when appropriate, the human resources department.
7.4.2 Where Records are Kept

Although it may vary among facilities, the location of training and competence assessment records needs to be clearly communicated to the employee, the supervisor, and the healthcare service’s management. Depending on size and complexity, services may wish to keep the records in a central location. Records need to be stored in a manner that prevents accidental or unauthorized destruction or modification.

7.4.3 Who Has Access?

Records need to be protected to ensure confidentiality and to prevent unauthorized access. Records need to be accessible and retrievable for outside surveyors who verify regulatory compliance.

7.4.4 When Can Records Be Destroyed?

Records should be destroyed after the retention period. However, if there is a question about keeping or discarding records, it may be better to keep the record. For many regulatory agencies, lack of documentation is indistinguishable from nonperformance.

8 Conclusion

Each healthcare service should establish its own training and competence assessment programs to ensure that new employees are able to perform their duties correctly, that all employees can properly execute new processes and procedures, and continue to perform at an acceptable level. A clear understanding of the sequence of work activities and the instructions for completing them properly—and the ability to put this understanding into actual practice—is the service’s best assurance of making its maximum contribution to patient safety.
References

Additional References

JCAHO. *Hospital Accreditation Standards*. Oakbrook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations; 2002.

JCAHO. *Standards for Pathology and Clinical Laboratory Services*. Oakbrook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations; 2000-2001.

29 CFR §820. *Quality System Requirements for Medical Devices*. (Revised annually).

An NCCLS global consensus guideline. ©NCCLS. All rights reserved.
Appendix A1a. Sample ABC Analyzer Process as a Flowchart

ABC Analyzer Testing Process

Specimens received at analyzer

Specimen acceptability is evaluated

Is analyzer test-ready?

Analyzer test-ready procedures performed

Yes

Patient samples loaded and tested

No

startup
daily maintenance
daily calibration
quality control

Did analyzer function properly?

Yes

Results are evaluated
- delta checks
- technical limits
- alert values

Results verified in LIS

Samples unloaded and stored

End
Appendix A1b. Sample ABC Analyzer Process as a Table

ABC Analyzer Testing Process

<table>
<thead>
<tr>
<th>What Happens</th>
<th>Who’s Responsible</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen acceptability evaluated</td>
<td>• technician; or</td>
<td>• “Evaluating Specimen Acceptability”</td>
</tr>
<tr>
<td></td>
<td>• technologist</td>
<td></td>
</tr>
<tr>
<td>Analyzer test-ready procedures</td>
<td>• technician; or</td>
<td>• “Starting Up the ABC Analyzer”</td>
</tr>
<tr>
<td></td>
<td>• technologist</td>
<td>• “Performing Daily Maintenance on the ABC Analyzer”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Performing and Evaluating Daily Calibration on the ABC Analyzer”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Performing and Evaluating Controls on the ABC Analyzer”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient samples loaded and tested</td>
<td>• technician; or</td>
<td>• “Generating an LIS Pending Log for the ABC Analyzer”</td>
</tr>
<tr>
<td></td>
<td>• technologist</td>
<td>• “Programming Patient Samples on the ABC Analyzer”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Loading Routine and Stat Racks on the ABC Analyzer”</td>
</tr>
<tr>
<td>Troubleshooting procedures performed</td>
<td>• technician</td>
<td>• Troubleshooting procedures from the manufacturer’s manual</td>
</tr>
<tr>
<td></td>
<td>• technologist; or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• supervisor</td>
<td></td>
</tr>
<tr>
<td>Results evaluated</td>
<td>• technologist; or</td>
<td>• “Evaluating Patient Results”</td>
</tr>
<tr>
<td></td>
<td>• supervisor</td>
<td>• “Calling Alert Values”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Following Up on Delta Checks”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Following Up on Technical Flag Limits”</td>
</tr>
<tr>
<td>Results verified in LIS</td>
<td>• technologist</td>
<td>• “Verifying Results in the LIS”</td>
</tr>
<tr>
<td>Samples unloaded and stored</td>
<td>• technician; or</td>
<td>• “Storing Patient Test Specimens”</td>
</tr>
<tr>
<td></td>
<td>• technologist</td>
<td></td>
</tr>
</tbody>
</table>
Training Guide for: ABC Analyzer Testing Process

Objectives

At the conclusion of the training event, the learner will be able to:

- perform the process and supporting procedures without supervision and within acceptable limits, including:
 - performing routine quality control and calibration verification procedures;
 - loading the sample trays;
 - operating the analyzer; and
 - unloading and clean-up when finished

- achieve a passing score on the written quiz and practical examination.

Training Method

Methods used in this training event include those checked below:

- Lecture
- Practice
- Computer-based
- Self-assessment
- Self-study
- Unknowns
- Observe demo
- Other:

Training Materials

Materials used in this training event include those checked below:

- Process flowchart or table
- Written procedures and job aids
- Operator’s manual
- Package inserts
- Lecture handout
- Self-study handout
- Computer program handout
- Videotape(s)
- Practice material

Learner Evaluation

Assessment of initial competence after this training event will include those checked below:

- Record review
- Direct observation
- Unknown materials
- Written quiz
- Oral quiz

Facility Name, Location

[filename and path]
Appendix A3. Sample Trainer Responsibilities for ABC Analyzer Testing Process

<table>
<thead>
<tr>
<th>Training Guide</th>
<th>Effective Date: 01/01/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number: TR1103B/02</td>
<td></td>
</tr>
</tbody>
</table>

Trainer Responsibilities for: ABC Analyzer Process

Objectives

As a trainer, you need to:

- *organize* the training event for success;
- *communicate* clearly;
- *provide* accurate and complete information;
- immediately *correct* performance problems in a respectful manner; and
- *provide* opportunities for feedback.

Training Guide

Familiarize yourself with the contents of the training guide.

Methods and Materials

- *Assemble* the methods and materials for training (see the training guide for the methods and materials to use).

- *Prepare the following samples for demonstration and practice:*
 - two routine racks of five patient specimens and two controls each
 - two stat racks of five patient specimens and two controls each

- *Prepare the following unknowns for the evaluation exercise:*
 - five routine racks of five patient specimens and two controls each
 - five stat racks of five patient specimens and two controls each

Learner Evaluation

Use the following tools to evaluate whether the learner has learned the material:

- **Unknowns:** *Provide* and evaluate unknowns.
- **Written:** *Administer and score* written evaluation.
- **Oral:** *Administer and score* questions selected from the question list.
- **DOCL:** *Observe* the learner and document the performance on the direct observation checklist (DOCL).
Appendix A4. Sample Learner Responsibilities for ABC Analyzer Testing Process

<table>
<thead>
<tr>
<th>Training Guide</th>
<th>Effective Date: 01/01/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number: TR1103C/02</td>
<td></td>
</tr>
</tbody>
</table>

Learner Responsibilities for ABC Analyzer Process

Objectives

At the conclusion of the training event, you must be able to:

- **explain** the process and describe his/her role within the process;
- **perform** the procedures in the correct sequence;
- **perform** the procedures as written and without direct supervision; and
- **perform** all required safety precautions.

Training Guide

Familiarize yourself with the contents of the training guide.

Methods and Materials

- **Complete** any pre-required reading.
 - processes
 - procedures
 - references
 - package inserts
 - manuals, etc.
- **Observe** any demonstrations.
- **Obtain** practice material.
- **Perform** standard operating procedures on practice material.
- **Do** a self-assessment using the Direct Observation Checklist.

Learner Evaluation

To demonstrate that you have learned the material, you will be asked to do one or more of the following:

- **Perform** unknowns, if applicable.
- **Perform** the procedure(s) for the trainer who will follow on a Direct Observation Checklist.
- **Complete** and pass the written quiz.
- **Answer** any oral questions.
- **Obtain** trainer’s sign off on the training checklist.
Appendix A5. Sample Training Checklist for the ABC Analyzer Testing Process

Training Checklist for the ABC Analyzer Testing Process

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Date</th>
<th>Trainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzer Set-Up and Run Process Flowchart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Starting Up the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Performing Daily Maintenance on the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Performing and Evaluating Daily Calibration on the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Performing and Evaluating Controls on the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Generating an LIS Pending Log for the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Programming Patient Samples on the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Loading Routine and Stat Racks on the ABC Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Evaluating Patient Test Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Calling Alert Values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Following Up on Delta Checks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Following Up on Technical Limit Flags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Verifying Results in the LIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Storing Patient Test Specimens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analyte-Specific Information Table(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Process Flowchart (from manufacturer’s manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Troubleshooting Procedures from the manufacturer’s manual in the order in which they are to be performed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive Maintenance Schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Preventive Maintenance Procedures from the manufacturer’s manual in the order in which they are to be performed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Calibration Procedures from the manufacturer’s manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Installation Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Periodic Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Recalibration After Service or Repair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example was adapted from Appendix I in NCCLS document GP26-A2—*Application of a Quality System Model for Laboratory Services*.
Appendix A6. Sample Direct Observation Checklist for the ABC Analyzer Testing Process

<table>
<thead>
<tr>
<th>Direct Observation Checklist for: ABC Analyzer Testing Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee: Observed by:</td>
</tr>
<tr>
<td>Did the employee correctly and completely:</td>
</tr>
<tr>
<td>1. Perform the required daily maintenance? Yes No</td>
</tr>
<tr>
<td>2. Correctly perform and evaluate daily calibration? Yes No</td>
</tr>
<tr>
<td>3. Correctly perform and evaluate the controls? Yes No</td>
</tr>
<tr>
<td>4. Generate an LIS Pending Log for the analyzer? Yes No</td>
</tr>
<tr>
<td>5. Program patient samples into the analyzer? Yes No</td>
</tr>
<tr>
<td>6. Load routine and stat racks onto the analyzer? Yes No</td>
</tr>
<tr>
<td>7. Evaluate patient test results before verifying in the LIS? Yes No</td>
</tr>
<tr>
<td>8. [AND SO ON…]</td>
</tr>
<tr>
<td>Last question: Follow all required safety precautions? Yes No</td>
</tr>
<tr>
<td>Number of times observed:</td>
</tr>
<tr>
<td>Competent to perform the procedure: Yes No</td>
</tr>
<tr>
<td>Signatures</td>
</tr>
<tr>
<td>Trainer: Employee:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Remedial action taken:</td>
</tr>
<tr>
<td>Remedial action completed:</td>
</tr>
<tr>
<td>Date: Trainer:</td>
</tr>
</tbody>
</table>

Facility Name, Location
[filename and path]
Appendix A7. Sample Written Assessment for the ABC Analyzer Testing Process

<table>
<thead>
<tr>
<th>Written Assessment Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number: TR1103F/02</td>
</tr>
</tbody>
</table>

Written Assessment for: ABC Analyzer Testing Process

Employee:
Date:

Theory Question(s):	What is the primary principle this instrument uses to quantitate the various analytes that it can test for?

<table>
<thead>
<tr>
<th>Technique Question(s):</th>
<th>What color are the stat racks for this analyzer and why are they loaded onto a different place than the routine racks?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interpretation Question(s):</th>
<th>Several results on the printout have the pound sign symbol (#) after them. Why?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Problem Solving Question(s):</th>
<th>You see an orange flashing light on the control panel. What does it mean and what will you do about it?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number correct:</th>
<th>Number incorrect:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Follow-up issues identified:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Actions taken:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reviewed by:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Facility Name, Location

[filename and path]
Appendix A8. Sample Evaluation of Training for the ABC Analyzer Testing Process

Evaluation of Training Experience Form

<table>
<thead>
<tr>
<th>Item</th>
<th>Circle</th>
<th>Comments</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Were you shown how to find the resource materials?</td>
<td>Y</td>
<td></td>
<td>1= unsatisfactory</td>
</tr>
<tr>
<td>Was the process clearly explained?</td>
<td>Y</td>
<td></td>
<td>2= satisfactory</td>
</tr>
<tr>
<td>Was (were) the procedure(s) clearly demonstrated?</td>
<td>Y</td>
<td></td>
<td>3= very good</td>
</tr>
<tr>
<td>Were you shown where to get supplies and equipment?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were you given enough time to practice?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was the trainer approachable?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you feel comfortable asking questions?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the trainer did not know the answer, could he/she find the information?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When you did the procedure(s), were you corrected respectfully?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you get constructive, timely feedback?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you feel comfortable performing the procedure(s) on your own?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were you asked questions to gauge your knowledge and understanding of the processes or procedure(s)?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facility Name, Location

[filename and path]
Appendix B1. An Example of a Direct Observation Form for Technologists

DIRECT OBSERVATION – TECHNOLOGIST RECORD

<table>
<thead>
<tr>
<th>Department</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employee Name</th>
<th>Score (Note: Satisfactory is ≥ 80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skill or Assay Observed</th>
<th>Overall Competency Result</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Place an X in the appropriate box to the right)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TASK (with examples)</th>
<th>S</th>
<th>U</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application and adherence to all elements of assay method/instrument/procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Follow procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reference instrument user manual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen handling and processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identify specimen type and storage requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Understand specimen rejection criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Maintains positive identification of specimen throughout all phases of the assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation/assessment of reagents and control materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Verify lot number and expiration date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ensure correct labeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretation and acceptance of test reactions and results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Review and assess test results; judge acceptability (i.e., verify/confirm test results are within the prevalence range)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation of results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Document and notify appropriate personnel about clinically significant/unusual test result (i.e., lead technologist, or manager)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Call and document critical value results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review of quality control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Understand, utilize, and adhere to Modified Westgard Multirule (refer to Laboratory Quality Control Policy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Review QC chart in LIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument operation, function checks, monitoring, and maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Perform daily, weekly, and monthly instrument monitoring and maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Operate/calibrate instruments according to manufacturer’s requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Understand instrument software/operating error messages; follow troubleshooting instructions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1. (Continued)

<table>
<thead>
<tr>
<th>TASK (with examples)</th>
<th>S</th>
<th>U</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **Utilization and appropriate demonstration of laboratory skills/practices**
 • Read meniscus
 • Perform accurate assessment
 • Demonstrate manual dexterity | | | |
| **Adherence to safety requirements**
 • Personal protective equipment
 • Waste disposal
 • Safe laboratory practices | | | |
| **LIS knowledge and abilities**
 • Track specimens
 • Look up test/patient information
 • Create pending logs
 • Review/validate patient results | | | |

Comments/Corrective Action/Follow up:

<table>
<thead>
<tr>
<th>Competency Assessment performed by CLS (Name)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewed and Approved by Technical Manager</td>
<td>Date</td>
</tr>
</tbody>
</table>

Scoring Key

<table>
<thead>
<tr>
<th># Category Satisfied</th>
<th>Score</th>
<th>Overall Competency Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100%</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>9</td>
<td>90%</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>7</td>
<td>70%</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

This example was contributed by Sutter Health California Pacific Medical Center Laboratory, San Francisco, California.
Appendix B2. An Example of a Direct Observation Form for Laboratory Assistants

DIRECT OBSERVATION – LABORATORY ASSISTANT

<table>
<thead>
<tr>
<th>Skill or Task Observed</th>
<th>Overall Competency Result</th>
<th>S</th>
<th>U</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task (with examples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application and adherence to all lab assistant-specific elements of a procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Follow procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistance with specimen retrieval, handling, and processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identify specimen type and storage requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Maintain positive identification of specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Assist with specimen retrieval or research for missing specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistance with the preparation of chemicals, reagents, and solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use standard formulas and pre-defined procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Utilize pre-assessed materials or pre-calibrated instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistance with preventive maintenance and troubleshooting, limited to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sterilize laboratory equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Recognize instrument software/operating error messages; notify technologists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ability to follow technologist’s instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration of laboratory skills/practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Maintain clean work area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prepare glassware and equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Demonstrate manual dexterity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adherence to all safety requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Personal protective equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Waste disposal (i.e., biohazardous vs non-biohazardous)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Safe laboratory practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration of LIS knowledge and abilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Track specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Look up test or patient information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Create pending logs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Research missing specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B2. (Continued)

<table>
<thead>
<tr>
<th>TASK (with examples)</th>
<th>S</th>
<th>U</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Monitor and inventory laboratory supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Observe expiration dates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Inform manager if supplies need to be ordered; assist with supply ordering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clerical support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• File department slides or reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Transcribe data on laboratory report slips or other manual or computer records after approval by a CLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Print, track, and trace pending logs/specimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assistance or support in unexpected/unusual situations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identify/describe unusual situations that pertain to position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Document unusual situations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Notify appropriate personnel (lead technologist, manager, or director)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments/Corrective Action/Follow up:

Competency Assessment performed by CLS (Name) Date

Reviewed and Approved by Technical Manager Date

Scoring Key

<table>
<thead>
<tr>
<th># Category Satisfied</th>
<th>Score</th>
<th>Overall Competency Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100%</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>9</td>
<td>90%</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>7</td>
<td>70%</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

This example was contributed by Sutter Health California Pacific Medical Center Laboratory, San Francisco, California.
Appendix C1. An Example of a Competence Assessment Form for Quantitative Testing

<table>
<thead>
<tr>
<th>Analyte</th>
<th>OLD Value</th>
<th>NEW Value</th>
<th>Mean</th>
<th>CV</th>
<th>SD Assay</th>
<th>SD Replicate</th>
<th>SDI OLD vs. NEW</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reviewed and Approved by Technical Manager

Date

This example was contributed by Sutter Health California Pacific Medical Center, San Francisco, California.
Appendix C2. An Example of a Competence Assessment Form for Qualitative Testing

<table>
<thead>
<tr>
<th>Department</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Name</td>
<td>Skill or Assay Assessed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>New Value</th>
<th>Old Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are the control values the same (e.g., both positive, both negative, or both indeterminate) or within 1 titer (e.g., 1:4, 1:8) of each other? (check one)

YES ☐ ☐ NO ☐

Do the controls correspond with the manufacturer’s expected value?

YES ☐ ☐ NO ☐

SCORE ___________________________ PASS ☐/FAIL ☐ (check one)

<table>
<thead>
<tr>
<th>Competency Assessment performed by (Name)</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reviewed and Approved by Technical Manager</th>
<th>Date</th>
</tr>
</thead>
</table>
Summary of Comments and Working Group Responses

GP21-A: *Training Verification for Laboratory Personnel; Approved Guideline*

General

1. Consider adding a procedure for validating the assessment tools. Because of the recent downsizing operations, Human Resources departments may not be able (or willing) to help the laboratories.
 - **Validation of training guides and their respective assessment tools is discussed in Section 6.4.3.**

2. Consider placing in the appendix an example of a written policy for the implementation of a personnel training verification program.
 - **An example of a process for developing a training assessment program has been provided as recommended.**

3. Consider adding a list of people who have implemented a program and agree to serve as telephone consultants.
 - **It is not within NCCLS’s scope or mandate to provide listings of consultants. Readers are encouraged to network within their local and regional professional associations.**

4. Consider adding to the preface a comment acknowledging the complexity of the process while highlighting both the need and the potential enhancement of the laboratory operation through the identification of problems or inaccuracies in the existing procedures.
 - **This guideline bases the development of training events on documented, validated work processes and procedures.**

Section 6.3.3, Learning Objectives

5. Include in the appendix or in this section additional examples of cognitive and psychomotor objectives and a list of acceptable verbs to use when developing objectives.
 - **Sections 6.4.2.2 and 6.4.2.3, respectively, discuss cognitive and psychomotor assessment. Examples have been provided.**

Section 7.2, Assessment Tools

6. Make a reference to the CLIA-88 requirements as listed in the Federal Register; that is, that all five types of verification procedures must be used.
 - **All verification methods required by CLIA ’88 legislation have been discussed in Section 6.4.3.**

Section 7.2.4, Administration of a Written Test

7. Change the wording in the final paragraph as follows: “Disadvantages exist: … the written format of questions and answers may not be like the working environment…” If well developed, written test questions can mimic directly what is encountered on the job. For example, the interpretation of hemograms, quality control data, test reporting issues, etc.
 - **A suggested means of writing test questions is discussed in detail in Section 6.4.2.2.**

Section 7.3.1, How and When to Document Verification

8. Make reference to the CLIA-88 requirements; that is, twice the first year, once thereafter.
 - **Initial and ongoing competence assessment are described in Sections 6.4.2.1 and 6.4.3.1, respectively.**
Summary of Delegate Comments and Working Group Responses

GP21-A2: Training and Competence Assessment; Approved Guideline—Second Edition

General

1. We feel this document does not allow for an efficient and time-effective method for change. We agreed that the training guide held useful information, but all the paperwork makes this document too cumbersome to be useful to our current laboratory operations.

 • The suggestion is to create a training guide packet for a complete work process, not for a single procedure; therefore, the number of training guides that would need to be prepared is much smaller than the total number of laboratory procedure documents.

 As for implementation, it is suggested that the laboratory begin by identifying one work process and then build the flowchart, SOPs, training, and competence assessment tools for that one process. Going process by process, it may take some time to make a complete change; this is called “continuous improvement.” The opportunity to be able to link work, training, and competence together standardizes training and reduces variation in training and performance for the benefit of patient safety. Such an opportunity should not be dismissed.

 Finally, this is a guideline and not a requirement, and was prepared at the request of laboratorians who needed guidance on the subject. The sample forms were provided to show one way to design and document training and competence that fulfills regulatory and accreditation requirements and improves patient safety. However, laboratories are free to use whatever means works for them to meet requirements.

2. This is a great guideline for program development; however, full implementation of all concepts may not be practical.

 • See the response to Comment #1. We reiterate that the implementation of this guideline would need to take place gradually, process by process, but that in so doing, work processes and training become more standardized, with less of the variation that causes errors and problems. Again, laboratories are free to use whatever means works for them to meet requirements.
The Quality System Approach

NCCLS subscribes to a quality system approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents through a gap analysis. The approach is based on the model presented in the most current edition of NCCLS document HS1—A Quality System Model for Health Care. The quality system approach applies a core set of “quality system essentials (QSEs),” basic to any organization, to all operations in any healthcare service’s path of workflow. The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The quality system essentials (QSEs) are:

<table>
<thead>
<tr>
<th>Documents & Records</th>
<th>Equipment</th>
<th>Information Management</th>
<th>Process Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Purchasing & Inventory</td>
<td>Occurrence Management</td>
<td>Service & Satisfaction</td>
</tr>
<tr>
<td>Personnel</td>
<td>Process Control</td>
<td>Assessment</td>
<td>Facilities & Safety</td>
</tr>
</tbody>
</table>

GP21-A2 addresses the following quality system essentials (QSEs):

```
<table>
<thead>
<tr>
<th>Documents &amp; Records</th>
<th>Organization</th>
<th>Personnel</th>
<th>Equipment</th>
<th>Purchasing &amp; Inventory</th>
<th>Process Control</th>
<th>Information Management</th>
<th>Occurrence Management</th>
<th>Assessment</th>
<th>Process Improvement</th>
<th>Service &amp; Satisfaction</th>
<th>Facilities &amp; Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Adapted from NCCLS document HS1—A Quality System Model for Health Care.
Related NCCLS Publications*

GP2-A4 Clinical Laboratory Technical Procedure Manuals; Approved Guideline—Fourth Edition (2002). This document provides guidance for the patient-testing community by addressing the design, preparation, maintenance, and use of paper or electronic technical procedure manuals.

GP26-A2 Application of a Quality System Model for Laboratory Services; Approved Guideline—Second Edition (2002). This guideline describes the clinical laboratory's path of workflow and provides information for laboratory operations that will assist the laboratory in improving its processes and meeting government and accreditation requirements.

HS1-A A Quality System Model for Health Care; Approved Guideline (2002). This document provides a model for providers of healthcare services that will assist with implementation and maintenance of effective quality systems.

HS4-A Application of a Quality System Model for Respiratory Services; Approved Guideline (2002). This document provides a model for providers of respiratory services that will assist with implementation and maintenance of an effective quality system.

HS5-A Application of a Quality System Model for Medical Imaging Services; Approved Guideline (2002). This guideline provides the necessary background information and infrastructure to develop a quality system that defines a structure for a comprehensive, systematic approach to build quality into the imaging services processes, assess its performance, and implement quality improvements. Individual service areas, such as diagnostic radiology, CT, ultrasound, interventional radiology, magnetic resonance imaging (MRI), mammography, and nuclear medicine will benefit from applying this model to their respective operations. To provide a practical example of how a quality system is developed and implemented, suggestions for diagnostic radiology are included.

* Proposed- and tentative-level documents are being advanced through the NCCLS consensus process; therefore, readers should refer to the most recent editions.
Active Membership
(as of 1 January 2004)

Sustaining Members
Abbot Laboratories
American Association for Clinical Chemistry
Bayer Corporation
BD
Beckman Coulter, Inc.
BioMérieux, Inc.
CLMA
College of American Pathologists
GlaxoSmithKline
Ortho- Clinical Diagnostics, Inc.
Pfizer Inc
Roche Diagnostics, Inc.

Professional Members
American Academy of Family Physicians
American Association for Clinical Chemistry
American Association for Respiratory Care
American Chemical Society
American Medical Technologists
American Society for Clinical Laboratory Science
American Society for Microbiology
American Society of Hematology
American Type Culture Collection, Inc.
Asociacion Mexicana de Bioquimica Clinica A.C.
Assn. of Public Health Laboratories
British Society for Antimicrobial Chemotherapy
Canadian Society for Medical Laboratory Science - Société Canadienne de Sciences de Laboratoire Médical
Canadian Standards Association
Clinical Laboratory Management Association
COLA
College of American Pathologists
College of Medical Laboratory Technologists of Ontario
College of Physicians and Surgeons of Saskatchewan
ESCMID
International Council for Standardization in Haematology
International Federation of Biomedical Laboratory Science
International Federation of Clinical Chemistry
Italian Society of Clinical Biochemistry and Clinical Molecular Biology
Japan Society of Clinical Chemistry
Japanese Community of Clinical Laboratory Standards
Joint Commission on Accreditation of Healthcare Organizations
National Academy of Clinical Biochemistry
National Association of Testing Authorities - Australia
National Society for Histotechnology, Inc.
Ontario Medical Association Quality Management Program-Laboratory Services
RCPA Quality Assurance Programs
PTY Limited
Sociedad Espanola de Biobioquimica y Patologia Molecular
Sociedade Brasileira de Analises Clinicas
Taiwanese Committee for Clinical Laboratory Standards (TCCLS)
Turkish Society of Microbiology

Government Members
Armed Forces Institute of Pathology
Association of Public Health Laboratories
BC Centre for Disease Control
Centers for Medicare & Medicaid Services
Centers for Medicare & Medicaid Services/CLIA Program
Chinese Committee for Clinical Laboratory Standards
Commonwealth of Pennsylvania Bureau of Laboratories

Department of Veterans Affairs
Deutsches Institut für Normung (DIN)
FDA Center for Devices and Radiological Health
FDA Center for Veterinary Medicine
FDA Division of Anti-Infective Drug Products
Iowa State Hygienic Laboratory
Massachusetts Department of Public Health Laboratories
National Center of Infectious and Parasitic Diseases (Bulgaria)
National Health Laboratory Service (South Africa)
National Institute of Standards and Technology
New York State Department of Health
Ontario Ministry of Health
Pennsylvania Dept. of Health
Saskatchewan Health-Provincial Laboratory
Scientific Institute of Public Health;
Belgium Ministry of Social Affairs, Public Health and the Environment
Swedish Institute for Infectious Disease Control

Industry Members
ABB Biodisk
Abbott Laboratories
Abbott Laboratories, MediSense Products
Acrometrix Corporation
Advancis Pharmaceutical Corporation
Alifax S.P.A.
Ammunirati Regulatory Consulting
A.S.R OSOCH
AstraZeneca Pharmaceuticals
Aventis
Axi-Shield POC AS
Bayer Corporation - Elkhart, IN
Bayer Corporation - Tarrytown, NY
Bayer Corporation - West Haven, CT
Bayer Medical Ltd.
BD
BD Consumer Products
BD Diagnostic Systems
BD VACTAINER Systems
Beckman Coulter, Inc.
Beckman Coulter, Inc.
Primary Care Diagnostics
Beckman Coulter K.K. (Japan)
Bio-Development SBH
Bio-Inova Life Sciences International
Biometria Laboratories SDN BHD
bioMérieux, Inc. (MO)
Biometry Consultants
Bio-Rad Laboratories, Inc.
Bio-Rad Laboratories, Inc. - France
Blaine Healthcare Associates, Inc.
Bristol-Myers Squibb Company
Canadian External Quality Assessment Laboratory
Chiron Corporation
ChromaVision Medical Systems, Inc.
Clinical Micro Sensors
The Clinical Microbiology Institute
Cognigen
Community Medical Center (NJ)
Copan Diagnostics Inc.
Cosmetic Ingredient Review
Cubist Pharmaceuticals
Dade Behring Inc. - Cupertino, CA
Dade Behring Inc. - Deerfield, IL
Dade Behring Inc. - Glasgow, DE
Dade Behring Inc. - Marburg, Germany
Dade Behring Inc. - Sacramento, CA
Dade Behring Inc. - San Jose, CA
David G. Rhoads Associates, Inc.
Diagnostic Products Corporation
Eiken Chemical Company, Ltd
Elanco Animal Health
Electa Lab srl
Enterprise Analysis Corporation
EXPERTech Associates, Inc.
F. Hoffmann-La Roche AG
Fort Dodge Animal Health
General Hospital Vienna (Austria)
Gen-Probe
GenVault
GlaxoSmithKline
Greiner Bio-One Inc.
IGEN Inc.
Immunicon Corporation
ImmunoSite, Inc.
Instrumentation Laboratory
International Technidyne Corporation
I-STAT Corporation
Johnson and Johnson Pharmaceutical Research and Development, L.L.C.
LAB-Interlink, Inc.
Laboratory Specialists, Inc.
Labeast Diagnostica S.L.
LifeScan, Inc. (a Johnson & Johnson Company)
LUZ, Inc.
Machan Dynamics
Medical Device Consultants, Inc.
Merck & Company, Inc.
MenzingZig-Pak
miV Sciences (MA)
Nippon Becton Dickinson Co., Ltd.
Novell Pharmaceuticals Co., Ltd.
Novartis Pharmaceuticals Corporation
Ortho-Clinical Diagnostics, Inc.
Ortho-McNeil Pharmaceutical
Oxoid Inc.
Paratek Pharmaceuticals
Pfizer Inc
Pfizer Inc - Kalamazoo, MI
Pfizer Italia Srl
Powers Consulting Services
Premier Inc.
Procter & Gamble Pharmaceuticals, Inc.
QSE Consulting
Quintiles, Inc.
Radiometer America, Inc.
Radiometer Medical A/S
Replidyne
Roche Diagnostics GmbH
Roche Diagnostics, Inc.
Roche Laboratories (Div. Hoffmann-La Roche Inc.)
SARL Laboratoire Carron (France)
Sarstedt, Inc.
Scharing Diagnostik
Schleicher & Schuell, Inc.
Second Opinion
Seraphim LifeSciences Consulting LLC
Streck Laboratories, Inc.
SYN X Pharma Inc.
Symex Corporation (Japan)
Symex Corporation (Long Grove, IL)
Theravance Inc.
THYMED GmbH
The Toledo Hospital (OH)
Transasia Engineering
Trisk Diagnostic Systems, Inc.
Tyco Kendall Healthcare
Veternquisit S.A.
Vicuron Pharmaceuticals Inc.
Vysis, Inc.
Wylex Research
Xyletech Systems, Inc.
YD Consultant
YD Diagnostics (Seoul, Korea)

Trade Associations
Advamed
Japan Association Clinical Reagents Ind. (Tokyo, Japan)
Medical Industry Association of Australia

Associated Active Members
31st Medical Group/SGISL (APO, AE)
67th CSH Wuerzburg, GE (NY)
121st General Hospital (CA)
Academisch Ziekenhuis - VUB (Belgium)
Academia Medical Laboratories, LTD (LA)
Akenseh Central Hospital and AFA (Norway)
Albermarle Hospital (NC)
Alfred I. duPont Hospital for Children (DE)
Allina Health System (MN)
Anne Arundel Medical Center (MD)
Antwerp University Hospital (Belgium)
Arkansas Department of Health
Armored Forces Research Institute of Medical Science (APJ, AP)
ARUP at University Hospital (UT)
Associated Regional & University Pathologists (UT)
Atlantic Health System (NJ)
Auraer Consolidated Laboratories
AZ Sint-Jan (Belgium)
Azienda Ospedale Di Lecce (Italy)
Baxter Regional Medical Center (AR)
Bay Medical Center (MI)
Bayerische Medical Center (MA)
Bhagwan Duren Laboratories (Turkey)
BC Biomedical Laboratories (Surrey, BC, Canada)
Bermuda Hospitals Board
Boulder Community Hospital (CO)
Brazurop Memorial Hospital (TX)
Brooks Air Force Base (TX)
Broward General Medical Center (FL)
Cahall Provincial Laboratory
Calgary Laboratories
Cape Breton Healthcare Complex
Nova Scotia, Canada
Carillon Consolidated Laboratory (VA)
Carolina Medical Center (NC)
Cathay General Hospital (Taiwan)
Cavan General Hospital (Ireland)
Central Texas Veterans Health Care System
Cento Diagnostico Italiano (Milano, Italy)
Champlain Valley Physicians (NY)
Chang Gung Memorial Hospital (Taiwan)
Changi General Hospital (Singapore)
Children’s Hospital (NE)
Children’s Hospital & Clinics (MN)
Children’s Hospital Medical Center (Akron, OH)
Children’s Hospital of Wisconsin
Children’s Medical Center of Dallas (TX)
CHR St. Joseph Warquignies (Belgium)
Christus St. John Hospital (TX)
Clarian Health - Methodist Hospital (IN)
CLSI Laboratories (PA)
Community Hospital of Lancaster (PA)
Community Hospital of the Monterey Peninsula (CA)
CompuNet Clinical Laboratories (OH)
Cook Children’s Medical Center (TX)
Cook County Hospital (IL)
Covance Central Laboratory Services (IN)
Crestview University Medical Center (NE)
Dutch Veterinary Laboratory (Denmark)
Danville Regional Medical Center (VA)
Department of Health & Community Services (New Brunswick, Canada)
DePereus Hospital (MO)
Detroit Health Department (MI)
Diagnostixs da America S/A (Brazil)
Diagnostico da America S/Z (Brazil)
Dr. Everett Chalmers Hospital (New Brunswick, Canada)
Duke University Medical Center (NC)
Dwight David Eisenhower Army Medical Center (GA)
EMI Regional Medical Center (OH)
Emory University Hospital (GA)
Enzo Clinical Labs (NY)
Fairview-University Medical Center (MN)
Florida Hospital East Orlando
Focus Technologies (CA)
Focus Technologies (VA)
Foothills Community Hospital (Calgary, AB, Canada)
Franciscan Shared Laboratory (WI)
Fresno Community Hospital and Medical Center
Frye Regional Medical Center (NC)
Gambro BCT (CO)
Gamm Dynacare Medical Laboratories (ON, Canada)